

Imaging Auditory Function in the Newborn Brain

Chuen Wai Lee^{1,2*}, Rob J Cooper^{1,3}, Maria Chalia^{1,2}, Laura A Dempsey^{1,3}, Sabrina Brigadói^{1,3}, Nick Everdell^{1,3}, Jeremy Hebden^{1,3}, Topun Austin^{1,2}

Authors' affiliations: 1. neoLAB, The Evelyn Perinatal Imaging Centre, Cambridge University Hospitals NHS Foundation Trust, 2. Department of Neonatology, Cambridge University Hospitals NHS Foundation Trust, 3. Department of Medical Physics and Biomedical Engineering, University College London, UK, *email: cw36@cam.ac.uk

INTRODUCTION

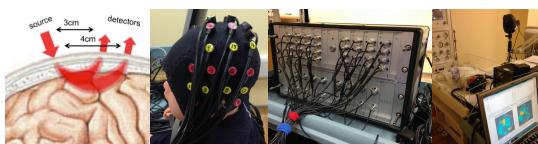
Advances in neonatal care have led to increased survival rates of preterm births. Preterm infants are at risk of brain injury and developing motor, cognitive or behavioural impairment. Early diagnosis and safe monitoring remains a major challenge in this vulnerable patient group.

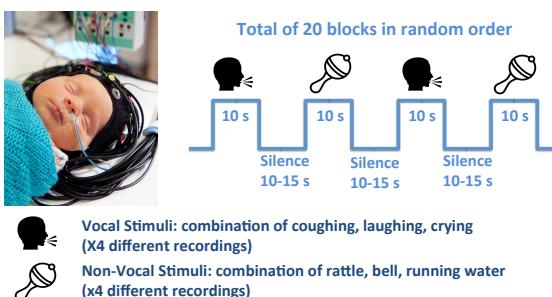
Functional neuroimaging methods can be used to evaluate mechanisms of brain injury and assess functional cerebral development. How the developing brain perceives auditory information can provide important information on early cerebral function and processing¹⁻³.

DIFFUSE OPTICAL IMAGING (DOI)

DOI is a safe and non-invasive functional brain-imaging modality that uses near-infrared light to produce images of cerebral haemodynamics. The system is silent and does not require sedation of infants, making it ideal for serial monitoring of sick infants at the cot-side.

The UCL Optical Imaging System, is a multichannel DOI device that uses 16 pairs of light emitting sensors (780nm and 850nm) and 16 light detectors via optical fibre optodes placed on the head over areas of interest. The system has been used by the neoLAB group (Cambridge Centre for Perinatal Neuroscience and University College London Biomedical Optics Research Laboratory collaboration) to study infant brain function.




Figure 1 (from left): a. Distribution of near-infrared light in the human brain at different source-detector distances in DOI¹; b. A cap (EasyCap, Germany) is used to hold source and detector optodes on the head, red: light emitting sensors, yellow: light detectors; c. The NTS Optical Topography system (GowerLabs, London); d. A DOI scan of an infant in the Evelyn Perinatal Imaging Centre, Rosie Hospital.

DATA COLLECTION

23 healthy term infants were recruited from the postnatal ward in the Rosie Hospital, Cambridge University Hospitals NHS Foundation Trust. Infants were scanned while asleep or at rest after a feed, in a quiet, dimly lit room in the Evelyn Perinatal Imaging Centre, Rosie Hospital. A bespoke cap (EasyCap, Germany) was used to hold the DOI sensors over the temporal and sensorimotor regions of the head to measure response to auditory stimuli.

Infants were presented vocal and non-vocal auditory stimuli as illustrated in the diagram below (figure 2). The volume of background noise during silence periods was ~30dB and during stimuli 55-60dB.

Figure 2: DOI auditory function experiment setup

Mean regional changes in total haemoglobin ($HbT = HbO + HbR$) in response to each stimulus type were calculated for 5 seconds preceding and 10 seconds after the stimulus. Using a gestational age-matched head atlas, structurally registered images of the mean cortical HbT changes were reconstructed using a multispectral approach with the TOAST forward modelling and image reconstruction package⁴.

IMAGE RECONSTRUCTION

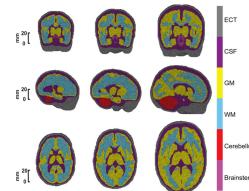


Figure 3: Multilayered volumetric tetrahedral meshes from average MRIs at 29, 35 and 44 weeks PMA⁵.

RESULTS

DOI images were reconstructed from a total of 21 subjects (median gestational age at birth: 40 weeks). Motion affected trials were excluded from each subject. Two subjects were excluded due to severe motion artifact in their data. DOI scans were performed within the first week of life (mean: 2.5 days, range: 1-6 days). Group DOI images show an increase in HbT mainly over the temporal regions in response to auditory stimuli. Presenting non-vocal sounds demonstrated a delayed response compared to vocal sounds.

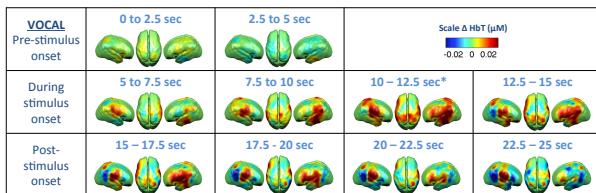


Figure 4: Group images from $N=21$ subjects. Images reconstructed in 2 sec windows for the HbT signal relative to a baseline defined as the mean period 5 seconds prior to the Vocal or Non-Vocal stimuli. *Indicates time window of maximum increase in HbT response.

FUTURE WORK

Our work demonstrates the potential use of DOI as a clinical neuroimaging tool. Further analysis will investigate response differences to each stimulus type. Moving forward, we are using DOI with EEG to image brain function in infants with brain injury to assess neurodevelopment.

References

1. Pena M, Maki A, Kovacic D, Dehaene-Lambertz G, Kozimura H, Bouquet F, Mehler J. Sounds and silence- an optical topography study of language recognition at birth. *PNAS*, 2003, Sep 30;100(20):11702-5
2. Minagawa-Kawai Y, van der Lely H, Ramus F, Sato U, Mazuka R, Dupoux E. Optical Brain Imaging Reveals General Auditory and Language-Specific Processing in Early Infant Development. *Cerebral Cortex*, Feb 2011;21:254-261
3. Naai N, Fuchino Y, Shibata M, Niwa F, Kawa M, Konishi Y, Okanya K, Miyowa-Yamakoshi M. Decreased right temporal activation and increased interhemispheric connectivity in response to speech in preterm infants at term-equivalent age. *Front Psychol*, 2013, Mar 14;4:94.
4. Gervain J, Mehler J, Werker J, Nelson CA, Csiba G, Lloyd-Fox S, Shukla M, Aslin RN. Near-infrared spectroscopy: A report from the McDonnell infant methodology consortium. *Dev Cog Neuro*, 2011; 22-46.
5. Arridge SR, Schweiger M, Hiraoka M, Delpy DT. 2000. A finite element approach for modeling photon transport in tissue. *Med. Phys.* 20(2 Pt 1):299-309.
6. Brigadói S, Aljabar P, Kulkisova-Murgasova M, Arridge SR and Cooper RJ, A 4D neonatal head model for diffuse optical imaging of pre-term to term infants. *NeuroImage*, 2014, 385-394.

Acknowledgements

This work was supported by fellowship grants from The Evelyn Trust and the Medical Research Council. We would like to thank the Rosie Hospital Postnatal Ward staff for their support. We would also like to express our gratitude towards parents that consented for their babies to participate in the study.